On the Products of Bounded Darboux Baire One Functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Products of Bounded Dar- Boux Baire One Functions

It is shown that for each k > 1, if f is a Baire one function and f is the product of k bounded Darboux (quasi–continuous) functions, then f is the product of k bounded Darboux (quasi–continuous) Baire one functions as well.

متن کامل

Connectivity of diagonal products of Baire one functions

We characterize those Baire one functions f for which the diagonal product x 7→ (f(x), g(x)) has a connected graph whenever g is approximately continuous or is a derivative.

متن کامل

Recovering Baire One Functions on Ultrametric Spaces

We find a characterization of those Polish ultrametric spaces on which each Baire one function is first return recoverable. The notion of pseudo-convergence originating in the theory of valuation fields plays a crucial role in the characterization.

متن کامل

Functions Whose Composition with Baire Class One Functions Are Baire Class One

We study the functions whose composition with Baire class one functions are Baire class one functions. We first prove some characterizations of such functions, then investigate a subclass of such functions which are defined in a natural way.

متن کامل

Products of Baire Spaces

Only the usual axioms of set theory are needed to prove the existence of a Baire space whose square is not a Baire space. Assuming the continuum hypothesis (CH), Oxtoby [9] constructed a Baire space whose square is not Baire. We will show in this paper that the assumption of CH is unnecessary. Such results are greatly enhanced by Krom [5], who showed that if there is such an example, then there...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Analysis

سال: 1999

ISSN: 1425-6908,1869-6082

DOI: 10.1515/jaa.1999.171